

ELIZADE UNIVERSITY ILARA-MOKIN

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

1st SEMESTER EXAMINATION

2018 / 2019 ACADEMIC SESSION

COURSE CODE: CSC 208

COURSE TITLE: Digital Logic

COURSE LEADER: Mr. O. Babalola

DURATION: 2.5 Hours

HOD's SIGNATURE

13/

INSTRUCTION:

Candidates should answer any three questions in the Let's Go Higher Section.

Students are warned that possession of any unauthorized materials in an examination is a serious assessment offence.

Refuge section

Don't attempt this question EXCEPT you've been unserious and now need refuge.

i. Draw the truth table of A+B

ii. Draw the truth table of A.B.

iii. Draw the truth table of A+B,C

iv. Draw the truth table of A'

v. Draw the logic diagrams for i-iv above

Let's go higher Section.

- 1a. Mention gates that are used in a two-level network?
- b. What's the significance of a two-level network?
- c. Is it possible to redesign a network as a two-level network? If yes, how?
- d. Draw a one-level network and write out it's Boolean function. Draw the truth table of the one-level network. All inputs should be labelled A, B, ...
- e. Determine how many bits the following values are and whether they are odd or even.
- i. 111000110 ii. 1010101011 iii. 111000111000

2a. What are minterms?

- b. Draw the truth table of the $\Sigma(a,b,v) = \{1,2,7\}$.
- c. What are maxterms? Draw the truth table for the maxterms for the above.
- d. What is the difference between a sum-of-products and a product-of-sums? What is the similarity between the two?
- e. Draw the layout of a 4 variable k-map, a 4 variable truth table, and a 4 variable 2-level network.
- 3. a. What does a multiplexer do in a digital logic system? Design a 4-line multiplexer and draw its truth table. Your inputs should be labelled A,B,...
- b. Explain what each aspect of a multiplexer does.
- c. Why are demultiplexers important? Design a 8-line demultiplexer device.
- d. Are there fractions in binary?
- 4. List 2 types of logic networks
- b. Mention 5 devices based on each type of network and what these devices are used for.
- c. What are the differences between these two networks.
- d. Convert the following from binary to octal, and decimal.
 - i. 011011011
- ii. 100100100 iii. 110110110 iv. 11111111
- 5. A network can be represented in a number of ways. List at least three ways and give examples.
- ii. Draw a kmap for the function $x(a,b,c) = \Sigma(2,4,6) + d(0,7)$. Draw for $x(a,b,c) = \Sigma(2,4,6)$. What is the difference between these two functions? Minimize the two functions iii. What is the least significant bit? What is the carry bit? What is the overflow bit?

Trivia Section: Answer these bits and stuffs to how off you understand CSC 208 (1 mark bonus each)

- I. I am a number, I am the same in decimal, same in hexadecimal, same in octal, and same in binary. What am I?
- II. I am a thing that turns signals to opposite. What am I?
- III. I make 1 + 1 = 1. What am I?
- I/v. I am a gate and only one thing can pass through me at a time. What am I?